STEAM not STEM: Why scientists need arts training


These are not technological issues. They contain technological issues but they are not fundamentally technological issues. They are ethical ones. They require sophisticated experts to debate issues of ethics and society — to plan what, and if, we need to create.

It’s as if we’ve encountered several simultaneous Manhattan Projects through the application of military DARPA funding, venture-capital investment and advancements in cloud-computing. We are seeing a whole host of life-changing technologies come to fruition after decades of basic research — and the rapid prototyping tools and production pipelines of the modern era have let us scale these new inventions faster than ever before.

And, as with the questions about ethics and the atomic bomb that led to the formation of the Federation of Atomic Scientists, we suddenly have important moral questions that only those creators have unique and important insights into.

We need to make sure STEM graduates working in these fields are able to engage with the toughest questions of our time: What, where and how should our new inventions be engaged?

Grounding experiments in empathy

I would like to see university curricula in STEM subjects expanded — to discuss whether we should develop certain technologies at all, with ethical concerns a common thread throughout our studies. The risks to society of anything else seem paramount.

I don’t argue that all policy-makers should be scientists, but rather that scientists should include the world of policy and social impact in their remit. They should be able to credibly think about and discuss those impacts with the rest of the world.

Snow thought the scientific mind “impatient to see if something can be done” — which echoes the “bias to action” so prevalent in start-up culture.

Action can be important, and even governments, not known for agile movement, are starting to embrace learning-through-doing. Finland, for example, has a department of experimentation which aims to bring design-thinking experimentation into policy work.

But even design thinking, the darling methodology-of-the-moment, grounds experiments in empathy. The developers of solutions should themselves be engaged with those affected by their works, co-creating through a direct engagement with users, with customers, with clients, with citizens.

Teaching ethics through the arts

And how else do our universities teach empathy, ethics and citizenship than through our arts and humanities fields?

There may be specific questions of citizenship, of responsibility, that we feel any and all STEM graduates should engage with (as there may be basic numeracy, stats or scientific literacy required for any non-STEM-trained citizen of the digital age).

I make no special claim to know the precise content of these classes, or to prescribe the curriculum of our degree program. We must develop them together. Tangible examples include this crowd-sourced list of Computer Science Ethics courses compiled by Casey Fiesler at the University of Colorado, Boulder.

Crises in medical research, such as the Tuskegee Syphllis Study, helped jump-start the fields of medical ethics and bioethics as well as concepts such as informed consent. Medical professionals now engage with complex questions of inclusion, representation, voice and agency.

These aren’t elements of dosage or measurement, but rather touch upon more abstract ideas of rights, values, and meaning — core elements in our study of the humanities. It’s time for the rest of the STEM field to engage with the same issues.

The Conversation

Richard Lachman, DIrector, Transmedia Zone & associate professor, Ryerson University

This article is republished from The Conversation under a Creative Commons license. Read the original article.